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Optimization
and the Traveling
Salesman Problem

Charles A. Whitney Harvard University

INTRODUCTION

An astronomer at the controls of a telescope often wishes to make relatively
short measurements of a long list of stars scattered across the sky. Moving the
telescope from one star to another is a time-consuming process, so the astrono-
mer tries to select the most efficient sequence of “‘visitations,” avoiding un-
necessary motion. This problem is particularly acute with a space telescope
orbiting the Earth high above the atmosphere. The pointing of such a telescope
is often controlled from the ground by small gas jets and the available fuel is
severely limited. If the stars are haphazardly distributed around the sky, the
sequence must be carefully chosen to conserve time and fuel. )
This is a form of the “‘traveling salesman problem,” and it is usually expressed
as the search for the shortest closed route among a set of cities such that each
city is visited just once. It is typical of a class of problems that can be stated
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briefly but that defy direct solution and can only be solved by a series of
educated guesses. These guesses are often based on probabilistic calculations.
This property distinguishes such problems from most of the problems described
in this book, and it describes many practical problems in fields as different as
geological exploration and electronics.

A direct approach to the solution would be to locate the cities on a map,
measure all the possible routes, and select the shortest. But that is easier said
than done, as we can see by counting the routes. If there are N cities and the
starting point is prescribed, there willbe N — 1 choices for the first stop, N - 2
for the second, and so forth, making a total of (N “SDXN-2)x(N-3)...
2 x 1 possible routes back to the starting point. Even with as few as 8 cities,
this leads t0 7 x 6 x 5 x 4 x 3 x 2 x 1 = 5,040 possible routes to be ex-
amined. And the number increases rapidly with the number of cities. If we have
two groups of 8 cities, making a total of 16, there would be more than a trillion
routes! And 16 is not a particularly large number, so we evidently must give
up the idea of a direct measurement of all possibilities.

Another example is the design of electronic circuits, where dozens of com-
ponents are to be connected by wires. The designer needs a method of finding
an efficient layout that will minimize the amount of wire required. In modern
circuits the number of possible arrangements often exceeds a trillion, and the
designer would not have time in the life of the universe to try all possible solu-
tions while looking for the best.

APPROACHING A SOLUTION
OF THE TRAVELING SALESMAN PROBLEM

There is an aspect of this type of problem that gives us some hope of coming
to a practical solution. We know intuitively that, in addition to the best solu-
tion, there will be many solutions that are nearly as good. Thus many of the
good solutions, including the best, will be of nearly the same length. This means
that we can be satisfied with a technique that brings us close to the optimum

without worrying too much if we do not find the single best route. For prob-.

lems of this type we can often assume that second best—or thousandth best—is
good enough.

What more can we say about the possible solutions to the traveling salesman
problem? Our intuition suggests—and experience verifies—that the traveler
ought to complete the tour of each section of the map before moving to another
section. As an extreme illustration, suppose the cities are arranged in two groups
(N/2 in each group) separated by a distance of G miles, as illustrated in Figure 1.
A route that jumps back and forth between the two groups would clearly not
be an efficient choice (see Figure 2). Its length would be roughly equal to the
product, N x G, and the salesman would do better to finish one group of N/2
cities before moving to the other, as in Figure 3. For example, suppose D is
the average distance between cities in each group, and the salesman starts from
a selected city in the first group. A visit to all the rémaining cities in the first
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Figure 1 Schematic map of 16 cities. The traveling salesman problem is to find the
shortest route from a specified city (circled) that passes just once through all the other
cities. In this example the cities are divided into two groups separated by a distance
of G miles. Within each group the mean separation is D miles.

START AND FINISH -

Figure 2 Example of a poor solution, in which the salesman moves back and forth
between the two groups of cities. His route length is approximately N x G miles, where
N is the total number of cities. Figure 3 shows a better solution.

START AND FINISH

Figure 3 Example of a good solution, in which the salesmari visits all the cities in
one group before moving to the other. As shown in the text, bis route length in this
case is approximately I' = 2 x G + D x (N - 2), which is less than the distance
L = N x G, for the route in Figure 2. As an example, suppose N = 16, G = 8 miles,
and D = 2 miles. Then L = 128 miles for the route in Figure 2, andI' = 2 x 8 + 2 x
14 = 44 miles. Thus the length of the better route is about % that of the poorer route.

group would involve a distance D x (N/2 — 1). Then he would move G miles
to a city in the other group, followed by D x (N/2 - 1) milés_ in visiting the
remainder of the group. Finally, he would move G miles to get back to the first
group, for a total of 2G + D x (N - 2) miles. Figures 2 and 3 comipare the
lengths of two such solutions, and they show that a little care can lead to a
substantial shortening of the route.
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So the salesman ought to cover each region thoroughly before moving to
the next, but how does he search for a good route within each region?

Before tackling this problem, let’s consider a more general type of problem
that has many industrial and scientific applications. It may appear to be a new
type, but it is simply a variation on the traveling salesman problem.

Consider the cost of fuel for the operation of a simplified manufacturing
plant shown schematically in Figure 4. The plant buys electricity from a public
utility to operate electric equipment such as power saws and an air conditioner.
The plant also buys fuel oil to operate a generator that produces electricity and
a certain amount of heat that can also be used for controlling the air temperature.
Given the costs of electricity and oil, as well as the efficiency of the machines—
which depends on the amount of effort put out by each machine—how should
the plant manager allocate the money available for fuel, and how should the
various types of fuel best be used within the plant? And if the plant needs more
air conditioning capacity, what type of new machine ought to be brought in?
In a realistically complex problem, the solution is far from obvious.

GENERAL DESCRIPTION OF THE PROBLEM OF OPTIMIZATION

All of these problems have several features in common. First, for each, we can
specify a cost function whose value we seek to reduce to a minimum. It may
be the length of a route, or the cost of fuel, or the total time required to point
a space telescope at a set of selected stars. Secondsgach problem is specified
by a number of fixed parameters that are outside our control, such as the posi-
tions of the stars in the sky, or the fuel requirements of the fictory machines
. and the manufacturing quotas set by management. These are constraints on
the problem, and they limit the possible solutions. Third, there are the adjustable
numbers whose choice constitutes the solution of the problem. For example,
we adjust the sequence of stars until the time is minimized, or we adjust the
purchases of fuel and the allocation of machine output in the factory to mini-
mize the overall cost of operation.
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Figure 4 This diagram of a manufacturing plant that operates power saws and an
air conditioner provides a simplified industrial example of the problems described
in this essay. Electricity and gas bave different costs and efficiencies, and the plant
manager must decide on the most economical amounts of electricity and oil to buy.
The answer will depend on deciding how much electricity to produce with the plant’s
own generalor. In a real plant, the problem is often too complicated to be solved di-
rectly, and the manager must resort to random search techniques.
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With the advent of relatively inexpensive electronic computers, it has become
feasible to carry out such searches by groping in the dark, so to speak. This
process is very much like a randomized search for the deepest part of a lake,

To take a problem that arises in geological exploration, suppose we are pros-
pecting for gas and are probing for the top of an underground gas dome, trapped
above an oil field (Figure 5a). In order to get the largest quantity of gas, we
wish to tap it at the highest part of the dome. Assume we have a device for
measuring the height of the dome above the level surface of thk ol at any point,
and we look for the position that makes the height a maximum. For consistent
terminology, we wish to express the problem in terins of minimizing a cost
function, so let us define the depth of the dome below a convenient level sur-
face as the cost function iand seek to minimize it.

If we knew very little about the dome we would start at an arbitrary place.
We would read the depth at the starting point, then move a short distance and
again measure the depth. If it decreased, we would continue moving in that
direction. If the depth increased, we would move in another direction. The
selection of a new direction could be based on the local stratification or it might
be a blind guess. In either case; we would continue this process until we came
to a place where the depth increased in ail directions. We would then know
we were near the peak of the gas dome. All points within a small distance of
the peak—say, a few meters—would have nearly the same depth because we
can consider the top to be horizontal in the region of the peak. So we could
adopt any of the positions in this region as the solution, as it would make no
practical sense to insist on locating the peak to the nearest centimeter.

If the dome is actually a smooth spherical or cylindrical shape, we can be
fairly sure we have come to the neighborhood of the true peak. But suppose
the shape is more complex, as in Figure 5b. In that case, we may merely have
found a localized peak. How can we avoid mistaking a local peak for the true
top? The key is in a probabilistic approach that keeps us from getting caught
at a false peak. ' :

DESCRIPTION OF A PROBABILISTIC SEARCH FOR THE OPTIMUM

In a probabilistic search we proceed by successive corrections, starting from
a guessed solution and trying new, randomly generated solutions until we are
satisfied. To see how this might work, let C be the cost function to be mini-
mized, say, the length of the route or the local depth of the gas dome, for a
particular solution. We evaluate C for the first guess and then construct a new
solution—randomly or usirig whatever information we have. This is equivalent
to moving to another position over the gas dome. We then reevaluate the cost
function (depth), obtaining C". If the new value is less than or equal to the pre-
vious, €' < C, we accept the new position as defining a next starting point.
On the other hand, if the new depth is greater, ¢’ > C, we decide whether
1o reject or accept the new position on the basis of a probabilistic calculation,
as follows. We compute a random number (imitating the outcome of tossing
a pair of dice, for example), and we restart from the old position if this number
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Figure 5a Diagram of a hypothetical oil deposit with an overlying region of natural

gas. The depth of the gas dome below the stirface of the ground is indicated. When
the gas is tapped off, the oil will rise in the dome, so the tap is to be placed at the
highest peak of the gas doime to get all of ibe gas. The text describes a random search
Jor the peak, where the depth is a minimum.

Figure 5b Similar to Figure 5a, except the dome bas a secondary peak thaf might
be mistaken for the true peak. The search technique must be designed to avoid stop-
Dbing at the secondary peak, or the gas in the bigher peak will be lost.

is less than some other number we have chosen previously. We repeat this pro-
cess many times, moving from one point to the next. :

Let us not worry, for the moment, about the details of the calculation that
leads us to accept or reject 4 riew solution because the details are not crucial
to an understanding of the method. The essential point is that the probabilistic
decision perrhits us to occasionally move to a new point even if it entails a small
increase of C. This prevents our getting stuck in local minima before we reach
the neighborhood of the absolute minimum. This is the way we avoid stop-
ping at 2 secondary peak of the gas dome. We always permit steps that would
momentarily take us to a deeper point of the gas dome because sometimes that
is the only path to the true peak.{

Despite the fact that the process is rather like groping in the dark, it has great
power for two reasons. First, it searches among a small sample of possible solu-
tions and picks out solutions that are approximately the best. This greatly
reduces the search time. Second, it can be used to find a practical solution to
any problem that can be expressed in terms of a cost function, C, and a set
of adjustable parameters. As long as a computer is available, we need not care
whether the numerical evaluation of the cost function is simple or complex.
The sky is the limit, and this explains the usefulness of the random search for

problems as diverse as manufacturing, geological exploration, and astronomy.

For those of you who are interested, I'll describe some of the technical details
of the'probabilistic decision to accept or reject each new soluti_on. I will phrase
it in terms of the randomized search for the peak of a gas dome.
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After each new position has been selected and its depth, C’, has been
evaluated, we divide the change of cost, ¢’ - ¢ by a number, 7, which has
the same units as C. (The selection of the value of T is a matter of experi-
ence. It must be suited to the problem.) We next compute a random num-
ber, 7z in the range between zero and unity, 0 < 7 < 1. We take its natural
logarithm (which will always be a negative number) and compare the result
with - (C' -C)/T If

logarithm » < - (¢ -o1

we accept the new route; otherwise we reject it. :

This particular formula is chosen because it is very permissive about small
increases of C while permitting only a very small number of large increases
of C. The probability of accepting an increase of C depends on the value
of T If T is large, this formula permits large increases. This means that almost
every new trial we make will be accepted as 2 new starting point. This is a
good way to start a search because we can wander freely about the dome,
As the computation progresses, it will sample the dome here and there and
move among the various peaks. The rejection criterion is gradually adjusted
by reducing the value of 7; making the acceptance of an increase of C less
likely. After all, a geologist who has already sampled much of the gas dome
will not want to move back to where the dome is lower. Establishing the
schedule for reducing T is a matter of experience; if T is reduced too quickly,
the process may get stuck at a false peak of the gas dome; if it is reduced too
slowly, the geologist will wander indefinitely. Ideally, the reduction of T will
gradually restrict the search to the neighborhood of the true peak. The pro-
cess is stopped when T has become small and the search appears confined to
a small region of the dome. The geologist can confirm that the true peak has
been found by repeating the entire search and seeing whether it returns to the
same region. )

The effect of changing T is illustrated in Figure 6a and b, where two
hypothetical searches are traced. In the first case, which would be appropriate
to the early stages of a search, the large value of T permits probing much of
the dome. When the search wanders back into the vicinity of the true peak,
the value of T is decreased, thus trapping the search in the best region.

CONCLUSION

The random search method, despite its apparent blindness, has proven very
powerful. The key to its success is twofold. It samples a small number of the
total number of possible solutions, and it avoids being trapped by false solu-
tions. A good solution for virtually any problem that can be expressed in terms
of a cost function and a set of adjustable numbers can be found by this method.
How close the derived solution comes to the best possible solution depends
on the persistence of the solver, but in most practical problems, a good solu-
tion is entirely adequate.
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Figure 6a Contour map of the roof of a gas dome with two peaks. The black region
indicates the oil level; lighter shading indicates the bigher roof, and the true peak is
on the left. A random search with a large value of the parameter, T, is indicated by
the segmented line. It covers a large portion of the dome, and it wzll not settle down
in eitber peak until T is decreased.

Hra,

Figure 6b Similar to Figure Ga. In this case, a small value of T was used and this
confines the search to steps that move toward the nearest peak, so it can stop at the
wrong peak, although in this case it did find the bigher peak.

PROBLEMS

1. List several types of problems that might be amenable to the random search
method. What are the characteristics of a problem that would require this
type of approach?

2. Imagine you have a newspapé¢r route and wish to find the most efficient
delivery sequence. What are some of the ways you might construct trial
routes? Suppose you live in a suburban area where the houses are strung
along several roads with few cross streets. How would this affect the pro-
cess by which you would construct trial routes?
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